

B.Sc. and M.Sc. Programs for the

academic year 5780 (2020-2021)

Jerusalem, Elul 5779, August 2019

HAC - Computer Science B.Sc. and M.Sc. Programs Page 2 of 44

Table of Contents
I. Introduction ... 4

Useful College Telephone Numbers ... 5

Academic Calendar 5780 (2020-2021) – Hadassah College (HaNevi’im Campus) 5

II. Department Curriculum .. 6

General description of Department Programs ... 6

Curriculum for BSc in Computer Science ... 6

BSc in Computer Science: Fields of study .. 6

Curriculum for MSc in Computer Sciences .. 6

General comments regarding all curricula .. 6

Degree requirements in the department by topic .. 7

BSc (three years): .. 7

MSc (two years): ... 7

BSc Program in the Department .. 8

First Year ... 8

Second Year ... 8

Third Year .. 9

Students with a Practical Software Engineering Degree ... 9

MSc Program in the Department ... 10

First Year or Second Year .. 10

Second Year or First Year .. 10

III. Academic Regulations .. 11

Academic Department ... 12

Computer Science Programs ... 12

Admission to the Computer Science Department ... 12

Study Duration .. 12

Attendance .. 12

Course Weight .. 13

Study Programs .. 13

Dropping a Course ... 14

Achievement Evaluation .. 14

Final Exams and Course Passing Grades ... 14

Eligibility for a makeup exam .. 14

HAC - Computer Science B.Sc. and M.Sc. Programs Page 3 of 44

Finality of Course Grade and Annual Grade .. 15

Progression through the Programs.. 16

Prolonged Absence during the Academic Year ... 16

Completion of Studies and Eligibility for a BSc Degree ... 16

Completion of Studies and Eligibility for an MSc Degree... 16

Using Computer Resources ... 16

IV. Course Outlines .. 18

BSc Studies ... 18

BSc First Year ... 18

BSc Second Year ... 24

BSc - Third Year ... 30

MSc Studies .. 38

MSc – Mandatory Studies ... 38

MSc – Elective Studies .. 40

HAC - Computer Science B.Sc. and M.Sc. Programs Page 4 of 44

I. Introduction

The Department of Computer Science at the Hadassah Academic College offers study programs

towards two degrees: (a) A Bachelor’s Degree in Computer Science (B.Sc.) and (b) a Master’s

Degree in Computer Science (M.Sc.).

The department initially opened its doors in 1995 and its first class graduated in 1998. Until 2001,

the department granted a BA degree in Computer Science, and in 2002 began offering a BSc

degree. In 2008 the department opened its MSc degree program in Computer Science. The

department has trained hundreds of graduates in the field of Computer Science who have

successfully entered the work force in Jerusalem and throughout Israel. Many graduates continue

their studies towards advanced degrees at distinguished universities in Israel and abroad, and

others complete their MSc degree at the Hadassah Academic College.

Both the BSc and MSc degree programs in the Department of Computer Science include studies

in software and programming, hardware, systems, mathematics, theoretical computer science,

elective studies in advanced areas of computerization, final projects, and general topics. Our

students consequently benefit from a combination of several worlds – a solid foundation in

mathematics and theoretical computer science, thorough and immersive knowledge of hardware

and software in the world of modern computers, and a variety of academic enrichment courses.

The department places great importance on cultivating personal relations with students, so that

lecturers and students become well-acquainted during the course of study. Many hours are

devoted to problem solving sessions and workshops alongside formal classroom studies.

Lecturers and teaching assistants make themselves available in the computer laboratories

outside classroom hours, enabling students to benefit directly and extensively from their

knowledge. The department’s computer laboratories are regularly renovated and made available

to students at all time.

Studies in the Department of Computer Science continue for three years (six semesters) and

include 140 credits. Students who work can study on a part-time basis and extend their studies

beyond three years. Students who have already earned a two-year diploma in practical software

engineering and meet the entry requirements for the BSc program are eligible for an exemption

of up to 20 credits.

The department also offers a study program towards an MSc in Computer Science. This program

is designed for candidates who hold a BSc in Computer Science or other allied fields of science

or engineering. The program is designed to enable students who work in the field of computers

to combine work and study. The MSc program continues for two to four years (four to eight

semesters) and includes 48 credits.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 5 of 44

Useful College Telephone Numbers
College President Prof. Bertold Friedlander (02) 629-1975

Vice President & Academic Director Dr. Tzachi Milgrom (02) 629-1978

Head of School of Computer Science Prof. Michel Bercovier

Computer Science Department Chair Prof. Michael Berman (02) 629-1953

Head of MSc Program Dr. Solange Karsenty Via
Department
Coordinator

Department Coordinator Ravit Dor (02) 629-1931

Dean of Students Dr. Simcha Rozen (02) 629-1307

Student Advisor Tzofit Chaim (02) 629-1306

Director of Challenge Center Ofra Rotem (02) 629-1938

Director of Student Administration Yael Catalan (02) 629-1964

Student Administration Coordinator Eynav Rosenblum (02) 629-1944

Chief Financial Officer Maya Shraga Albalak (02) 629-1993

Tuition Department Asaf Malkosh (02) 629-1990

Head of English Department Nourit Melcer-Padon (02) 629-1310

Director of Information Resource
Center

Eric Royi (02) 629-1303

Deputy Director Logistics &
Information

Gad Singer (02) 629-1970

Information Office (02) 629-1911

Academic Calendar 5780 (2020-2021) – Hadassah College

(HaNevi’im Campus)

See (in Hebrew): https://tinyurl.com/y5qv373q/

https://tinyurl.com/y5qv373q/

HAC - Computer Science B.Sc. and M.Sc. Programs Page 6 of 44

II. Department Curriculum

General description of Department Programs
Curriculum for BSc in Computer Science
The curriculum for the BSc in Computer Science is intended for those with a Bagrut matriculation

certificate (or an equivalent). The planned duration of this course is three years (six semesters).

This track includes a final project. Scope of study in this track is 140 credits.

Students with a two-year ‘Practical Software Engineering’ degree who meet the admission

requirements of the ‘Engineer Completion’ program will enjoy an exemption of 20 credits out of

the above.

BSc in Computer Science: Fields of study

• Software & Programming: Basic and advanced studies distributed throughout the

degree program. These are mandatory and are required to the same extent across all

curricula.

• Hardware & Systems: Basic studies spread out over the degree program. Both the

regular and Haredi tracks include several required courses in hardware and systems, with

exemptions in the completion track.

• Mathematics: Fundamental courses in mathematics are taught in the first and second

year. These studies are mandatory and are required to the same extent across all

curricula.

• Theoretical Computer Science: Elementary and advanced studies distributed

throughout the program. These are mandatory and all are required in all curriculum tracks.

• Elective Course in Computer Sciences: Advanced studies are taken in the third year.

• Projects: A final project is carried out in the final year of the study program.

• General Topics: As part of the studies for a degree in Computer Science, students are

required to complete a number of elective courses on general topics. These courses can

be spread out over the entire degree program.

Curriculum for MSc in Computer Sciences
MSc Degree: The curriculum for the MSc in Computer Science is intended for those with a BSc

in Computer Science or a related scientific or engineering field. The MSc Computer Science

curriculum is a program of between two years (four semesters) to four years (eight semesters).

The program has been constructed in a manner that will enable people who work in the field of

computers to combine their studies and their work. It includes mandatory courses, elective

courses, a seminar, final project and a comprehensive final exam at the end of studies.

General comments regarding all curricula
A. Exemptions from certain courses or credits may be obtained based on prior studies.

Procedures and guidelines for exemption from courses or credits are provided in the

College Regulations.

B. Curricula in the department are dynamic and updated year by year. The Computer

Science Teaching Committee may revise and update curricula as required – syllabuses,

scope of study and the curriculum for each year.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 7 of 44

Degree requirements in the department by topic

BSc (three years):

TOPIC CREDITS

Mathematics 32

Theoretical Computer Science 25

Software & Programming 32

Hardware & Systems 25

Computer Science Elective Course &
Seminar

8

Final Project 8

Total Computer Science 130

General Topics 10

Total 140

MSc (two years):

TOPICS CREDITS

Theoretical Computer Science – mandatory 6

Software & Programming – mandatory 6

Hardware & Systems – mandatory 6

Computer Science Elective Course 20

Final Project 10

Total Computer Sciences 48

HAC - Computer Science B.Sc. and M.Sc. Programs Page 8 of 44

BSc Program in the Department

First Year

SEMESTER A SEMESTER B

COURSE
CREDIT

S
WEEKLY
HOURS

COURSE CREDITS
WEEKLY
HOURS

Mathematical Tools for
Computer Science

4 3 +2
Calculus: Single

Variable Calculus
4 3 +2

Linear Algebra A 4 3 +2 Linear Algebra B 4 3 +2

Introduction to Computer
Science

4 3 +2
Introduction to

Theoretical Computer
Science

4 3 +2

Discrete Mathematics 5 3+2+4 Modular Programming 5
3+2+

4

Digital Systems 4 4
Hardware/Software

Systems & Assembly
Language Programming

4 4

Mathematics Workshop A 0 2
Mathematics Workshop

B
0 2

English 0 to 6 English 0 to 6

Total 21 30 Total 21 30

Second Year

SEMESTER A SEMESTER B

COURSE
CREDIT

S
WEEKLY
HOURS

COURSE CREDITS
WEEKLY
HOURS

Calculus: Applications of
Integrals and

Approximations
4 3 +2

Calculus: Curves &
Surfaces

4 3 +2

Algebraic Structures 4 4 Probability Theory 4 4

Data Structures 4 3 +2 Algorithms 4 3 +2

Introduction to Object
Oriented Programming &

Software Engineering
5 2+2+4

Object Oriented
Programming & Game

Development
5

2+2+
4

System Programming &
Introduction to Parallel

Programming
5 2+2+4

Scripting Operating
Systems &

Programming
5

2+2+
4

Scientific Writing &
Presentation

2 2
General Elective Course

A
2 2

English 0 to 4 English 0 to 4

Total 24 32 Total 24 32

HAC - Computer Science B.Sc. and M.Sc. Programs Page 9 of 44

Third Year

SEMESTER A SEMESTER B

COURSE
CREDIT

S
WEEKLY
HOURS

COURSE CREDITS
WEEKLY
HOURS

Automata and Formal
Languages

3 3
Computability &
Computational

Complexity
3 3

Logic for Computer
Science

3 3 Databases 4 4

Internet Programming A 4 4 Internet Programming B 4 4

Computer Networking 4 4 Computer Architecture 3 3

Computer Science
Elective Course A

3 3
Computer Science
Elective Course B

3 3

Final Project (year
course)

8 3
Final Project
(continued)

 3

Computer Science
Seminar

2 2
General Elective Course

C
2 2

General Elective Course
B

2 2
General Elective Course

D
2 2

Total 29 24 Total 19 24

A. The courses ‘Scientific Writing & Presentation’ and ‘Computer Science Seminar’ may be

taught in either semester A or semester B.

B. Each student must earn 8 credits in general elective courses other than the ‘Scientific

Writing & Presentation’ course. Accumulation does not have to be by four courses of 2

credits each.

C. Two summer semesters will be held on the Strauss Campus. Each year, two courses will

be taken during the summer semester (and not in semester A or B).

Students with a Practical Software Engineering Degree

Students on the BSc completion track follow the same curriculum as those on the regular track,

with the exception of the following courses from which they are exempt:

A. Digital Systems (4 credits)

B. Hardware/Software Systems & Assembly Language Programming (4 credits)

C. System Programming & Introduction to Parallel Programming (5 credits)

D. General Elective Course (2 credits)

E. Students who achieve a grade of at least 75 in each of the courses ‘Introduction to

Computer Science’ and ‘Modular Programming’ will be exempt from the course ‘Object

Oriented Programming & Game Development’ (5 credits). Students who are not exempt

from this course will instead be exempt from one elective course in computer sciences (3

credits) and one general elective course (2 credits).

HAC - Computer Science B.Sc. and M.Sc. Programs Page 10 of 44

MSc Program in the Department

First Year or Second Year

SEMESTER A SEMESTER B

COURSE
CREDIT

S
WEEKLY
HOURS

COURSE CREDITS
WEEKLY
HOURS

Computational Complexity 3 3
Object Oriented

Analysis and Design
3 3

Computer Science
Elective Course A

3 3
Protocols and Computer

Networks
3 3

Computer Science
Elective Course B

3 3
Computer Science
Elective Course C

3 3

Computer Science
Elective Course D

3 3

Total 9 9 Total 12 12

Second Year or First Year

SEMESTER A SEMESTER B

COURSE
CREDIT

S
WEEKLY
HOURS

COURSE CREDITS
WEEKLY
HOURS

Advanced Algorithms 3 3
Advanced Computer

Architecture
3 3

Software Engineering 3 3
Computer Science
Elective Course F

3 3

Computer Science
Seminar

2 2 Final Project 10 10

Computer Science
Elective Course E

3 3

Total 11 11 Total 16 16

Comments:

• The MSc curriculum includes six mandatory courses – Two in the theory of computer

science: ‘Computational Complexity’ and ‘Advanced Algorithms’; Two in the field of

software: ‘Software Engineering’ and ‘Object Oriented Analysis and Design’; and two in

the field of systems: ‘Advanced Computer Architecture’ and ‘Protocols and Computer

Networks’.

• Courses in the MSc program can be completed over two to four years.

• The final project shall be completed under academic and scientific supervision of

department faculty members.

• Upon completion of studies, a comprehensive examination is conducted that covers all

areas of study in the curriculum.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 11 of 44

III. Academic Regulations

The regulations listed below are based on Hadassah College's

Academic Policies and Computer Science Department Regulations.

The regulations outlined below may be changed or revised at the

discretion of the college and/or department.

All regulations are written in the male gender but refer to male and

female students alike.

The department's teaching committee may, at its discretion, diverge

from the procedures below.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 12 of 44

Academic Department
An academic department is a framework that holds academic studies for a bachelor’s degree

and/or master’s degree.

Computer Science Programs
The Computer Science Department offers the following study tracks:

• Regular track – three-year BSc studies for applicants with a matriculation certificate or

an equivalent (students with a two-year ‘Software Engineer’ degree shall study on this

track and be exempt from a number of credits).

• MSc track – two-year MSc track for students with a BSc in Computer Sciences or a related

scientific or engineering field.

Admission to the Computer Science Department
Candidates who have met the admission conditions for one of the courses in the Computer

Science Department will be accepted into a full-time program with the status of full-time student

in this course.

Candidates who have not met conditions for admission to the department may, in exceptional

cases, be admitted to a limited program with a temporary status of irregular student. This status

requires the approval of the department's admissions committee and is valid for one academic

year only. Students’ curriculum for this academic year will be determined by the head of the

department. At the end of the academic year, the student's status will be discussed by the

department's pedagogical monitoring committee. Depending on the students’ achievements, it is

decided whether to transfer them to a full-time student status or to stop their studies in the

department.

Study Duration
Studies in the Computer Science Department are conducted over the winter semester and spring

semester. The Strauss Campus (Haredi Program) also holds a summer semester. Exams are

conducted and projects are submitted at the end of each semester. Students must study the

various subjects indicated in the program published by the department.

Attendance
The Computer Science Department requires a minimum of 80% attendance in the following

courses:

• Mandatory English studies

• Scientific skill courses

• Computer science seminars

Lecturers in each course may determine attendance requirements in the course syllabus, at their

discretion.

Students repeating courses due to a failing grade are required to attend 80% of classes, unless

the course syllabus explicitly exempts them. It is the student's responsibility to obtain the lecturer’s

signature on an attendance form at the end of each class, and hand the signed form to the lecturer

at the end of the course. A student who fails to do so will fail the course.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 13 of 44

A student who is absent beyond the allowable hour limit will be considered as not meeting course

requirements, and this without further additional notice.

Absence from courses with mandatory attendance may result in courses being invalidated.

Lecturers are entitled not to admit a late student.

Course Weight
Each course is given an academic weight expressed in credits. The weight of a course is the

same for all students taking the course in a given academic year. The weight of a course may

vary from one academic year to another. Credit allocations are made by the department's teaching

committee. As a rule, the number of credits for a course is determined by the number of lecture

and problem session hours on the course – one weekly semester hour in a lecture awards one

credit and one weekly semester hour of problem session awards half a credit – however, there

may be exceptions.

Study Programs
Each study program in the Computer Science Department is assigned a curriculum which

includes mandatory courses and elective courses. Each course belongs to a field of study

(mathematics, theoretical computer sciences, software and programming, hardware and systems,

computer science elective courses etc.) and to a particular academic year within the program.

Programs may change at the teaching committee’s decision. Revised programs are published in

the department newsletter at the start of each year.

Regular students must complete the courses in accordance with the curriculum on their study

track. Students failing to comply with the curriculum in their study track shall receive a

personalized curriculum.

Study Form

Registration for courses is through an online study form. The study form is a statement from

students about the courses they intend to study during the year. This statement is binding for

students with regards to academic and tuition requirements.

At the start of each academic year, all students will enter their curriculum into the information

system. The curriculum will be forwarded to approval of an academic advisor. Where necessary,

and under the academic advisor’s guidance, the student will have to amend their registration.

Study programs must comply with the following conditions:

• Courses in the are part of the curriculum in the track that students are studying.

• Students meet prerequisites for all courses included in their curriculum.

• The courses meet minimum requirements determined by the academic advisor.

• In the event the study form includes courses from different study years of students’

curriculum – the academic year to which the courses belong is no more than one year

ahead.

• Students whose curriculum has been dictated by the Department Head or Pedagogical

Monitoring Committee will submit a study form detailing the prescribed program.

Any changes to the curriculum require authorization from the academic advisor. Requests to add

or remove courses must be submitted to the academic advisor in accordance with the timetable

prescribed in the student regulations.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 14 of 44

Dropping a Course
Students will be defined as having dropped a course in the event that they begin studying the

course, do not receive permission from the academic advisor to leave the course and do not meet

the academic obligations of the course as published by the lecturer at the start of the semester.

A student’s final grade for such a course shall be zero.

Achievement Evaluation
In order to improve and evaluate students’ level of education, students must complete various

tasks, including exercises, papers, projects, periodic exams and final exams.

Academic tasks required for each course will be published in the course syllabus handed out by

lecturers at the start of courses.

Students will not be allowed to take course final exams if they have failed to meet all the

compulsory requirements set for exam eligibility. Students who are not eligible to take the exam

will be notified of this. Student not eligible to take final exams will be considered to have dropped

the course (i.e. their final grade in the course will be zero).

In order to receive a passing grade in a course in which a final exam is taken, students must

obtain a passing grade in the final exam. The final grade (which includes the weighing of

additional assignments as defined in the course syllabus) will only be calculated for students who

received a passing grade in the final exam. The course grade for students who have not passed

the final exam will be the exam grade.

Exemption from submitting assignments and projects, due to military reserve duty or illness, will

be provided by the course lecturer after receiving written confirmation. Exceptional exemptions

will only be granted after a written request from the student to the lecturer. The lecturer must

submit the application together with his recommendations for approval to the department head.

Final Exams and Course Passing Grades
Passing grade for final exams

• Passing grade on a final exam in a BSc course is 55.

• Passing grade on a final exam in a MSc course is 60.

Passing grades for courses

• Passing grade for a BSc course is 55.

• Passing grade for a MSc course is 60.

Comment: Students enrolled in an undergraduate degree program and taking a course from a

graduate degree program, will be required to receive a passing grade of 60 on the exam and a

passing grade of 60 on the course, as is a student enrolled in a graduate program.

Eligibility for a makeup exam
Students are entitled to a makeup exam according to the rules defined in the College's academic

regulations.

In addition: Students will be eligible for a makeup (in one course, at most) after failing both exam

dates for a course, if the course constitutes the last requirement for completion of their degree (all

other courses have been completed on the first or second dates).

HAC - Computer Science B.Sc. and M.Sc. Programs Page 15 of 44

Finality of Course Grade and Annual Grade
Course grades will be considered final without appeal to the course lecturer, after two months

have passed since the last assignment was submitted.

Grades of all courses taken in a particular academic year shall be considered final with no right

to appeal to the Head of Department after December 31 of the calendar year in which course was

completed.

Submission
Procedures

Submission
Dates

Assignment Return
and Grading
Procedure

Appeal
Procedure

Students will keep a copy
of submitted papers so
they may be graded in the
event the original is lost.

In the event of non-
submission, the grade is
weighted as zero.

In courses where the
teaching language is not
Hebrew, assignments
shall be submitted in the
language in which the
course is taught.

In courses taught in
Hebrew, assignments
shall be submitted in
Hebrew. Students wishing
to submit an assignment in
a language other than
Hebrew must obtain the
approval of the course
lecturer and Head of
Department

Lecturers may invite
students to appear before
them or before two
lecturers to examine
students’ knowledge and
ascertain the paper was
written by them.
The lecturer will then
make a decision
accordingly regarding the
assignment and its grade.

Submissions shall be via
the Moodle system only.

End of course
papers:
Until the end of
second exam dates.

Seminar papers:
 Final projects /
seminars will be
submitted until one
month after end of
second exam dates.

Students not
submitting on time
will have 0 marked
on their chart.
Students will be
required to re-enroll
in the course the
following year and
meet all course
requirements.

Lecturers will assign
grades for the final
project within 45 days of
the final date for its
submission.
Lecturers must return
checked thesis papers
within three weeks of
their submission.

Seminar papers:
Lecturers will assign
grades for final seminar
papers within 45 days of
the final date of
submission.
Lecturers must return
checked papers within
45 days of submission.

Students may appeal
an assignment grade,
including seminar
papers, if its weight in
the final grade is 60%
of the final course
grade or higher.

Appeals shall be
submitted in writing
within 14 days of
publication of graded
papers, detailing the
grounds for appeal.
Students appealing a
grade will be aware
the entire paper will be
regraded and not only
the sections referred
to in the appeal.
Lecturers may assign
a lower grade.

The amended grade
or lecturers’ written
decision to dismiss the
appeal, will be
delivered within 14
working days.

In exceptional cases,
the head of school is
empowered to decide
whether the paper
should be passed on
to a second examiner.

Assignments

submitted over

the summer

vacation or up

until two weeks

before the end of

semester 2 –

grades shall be

delivered within

90 days of

submission.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 16 of 44

Progression through the Programs
This section replaces the “Transition from Year to Year” section of the College Regulations.

At the end of each academic year, the academic progress of each student will be reviewed. The

evaluation will address the following aspects:

• The weighted annual average of all courses in which the student was enrolled in the

academic year in question.

• The weighted annual average of all courses the student passed in the academic year in

question.

• The number of credits the student obtained (in passed courses), considering the program

in which the student was enrolled in the academic year in question.

The academic status of a BSc student with an annual average, as defined above, below 65 or

one who has not obtained a high enough number of credits will be reviewed by the Department’s

BSc Pedagogical Monitoring Committee. The academic status of an MSc student with an annual

average, as defined above, below 75 or one who has not obtained a high enough number of

credits will be reviewed by the Department’s MSc Pedagogical Monitoring Committee.

The Department's Pedagogical Monitoring Committee may make be one of two decisions:

cessation of studies or continuation of studies following a curriculum dictated by the committee.

A dictated curriculum may include repeating courses the student has passed. A dictated

curriculum may also include repeating the entire study program in which the student was enrolled

in the year in question (i.e. repeating an academic year).

Prolonged Absence during the Academic Year
Students who require an extended absence during the academic year are required to discuss this

with the Department Head in advance or at the earliest opportunity, in order to allow for

adjustments to their program and to their obligations in the various courses. Justified reasons for

prolonged absence include: particularly prolonged military reserve service, prolonged illness, or

other unusual personal reasons at the discretion of the Department Head.

Completion of Studies and Eligibility for a BSc Degree
Students who have completed all required courses listed in the program set by the Department’s

Teaching Committee, will be academically eligible for a BSc degree in Computer Science. A

degree cannot be obtained after more than eight years from the start date of a student's studies.

Completion of Studies and Eligibility for an MSc Degree
Students who have completed all required courses listed in the program set by the Teaching

Committee of the Master's Degree, successfully passed all exams and assignments of the various

courses in the program, submitted their final project and received a passing grade, and passed

the program's qualifying exam – will be academically eligible for a MSc degree in Computer

Science. A degree cannot be obtained after more than four years from the start date of a student's

studies.

Using Computer Resources
The use of the College's computer resources, including computers, networks, communications

equipment, hardware, software and files (hereinafter "Computer") is subject to the following

conditions:

HAC - Computer Science B.Sc. and M.Sc. Programs Page 17 of 44

1. Computers are to be used for academic purposes only and not for any other purpose.

2. Credentials for using computers or personal passwords (hereinafter – the “code”) can only

be used by students. Codes must be kept confidential and are not to be revealed to any

other person. Students are personally responsible for any other use made of their codes.

3. Computers may only be used with the codes given to students and not with any other code

and/or account.

4. It is strictly forbidden to use another person's code, eavesdrop on data communication

lines or in any way connect with other people's computing resources.

5. Students must use computers in accordance with provisions of the law and College

procedures. The instructions of the College's authorized officials must be heeded to avoid

any action, act or omission that could cause damage to the computer, data or information

stored therein.

6. It is prohibited to use software that has been illegally copied and/or obtained by the user

in any way that violates copyright law in College computers.

7. The College does not bear liability towards students in any way for information, software,

data and/or anything resulting from use of the Computer and shall not be liable and/or

responsible for any loss which may be incurred by the student as a result of using the

Computer.

8. College Computers are not to be used for hacking into other systems and/or for gaining

illegal access to them.

9. Violation of this obligation constitutes a disciplinary offense and may even constitute a

criminal offense.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 18 of 44

IV. Course Outlines
BSc Studies
BSc First Year

Introduction to Computer Science Course code:
10204011

5 credits

Prerequisites: None Year 1 – Semester
1

Lecture:

Tutorial +
Workshop:

Dr. Yoram Biberman, Rachel Kahana-Shapira, Tzvi
Melamed, Dr. Dvora Ross

Micha Brenig, Amitai Ben-Nun, Nurit Keratin

4 weekly hours

2+3 weekly hours

Programming studies at Hadassah College evolve in parallel with the evolution of the programming world:

starting with basic programming, moving on to procedural programming, from that to modular, and finally

to object-oriented programming.

In this course, we will get to know the basics of programming, and the procedural approach as expressed

in C/C++ languages. In addition, as an introductory course to Computer Science as a scientific discipline,

we get exposed to issues of it, like: What is an algorithm? How is its effectiveness evaluated? How to write

computer programs properly? How does the operating system manage a program’s allocated memory? We

touch on all of these issues as we walk the programming path: each question will be presented in the

context of programs to which it is relevant.

Topics covered: Basic commands (output input [cin] and [cout]). Control statements (conditions and loops).

Arrays. Constants and enumerated data types. Functions and their use for writing procedural programs

(including value and reference parameters, and value-returning functions). Programming using recursion.

Files. Testing the correctness of a program. Familiarity with a number of basic algorithms (bubble sort,

insertion sort, quicksort, merge sort, serial search, binary search, Towers of Hanoi, Eight queens puzzle).

Intuitive runtime estimation. How the OS allocates memory to a program (on the stack).

Digital Systems Course code:
10203011

4 credits

Prerequisites: None Year 1 – Semester
1

Lecture: Dr. Simcha Rozen, Dr. Simcha Rozen, David Cohen 4 weekly hours

How is data stored on a computer? How does a computer execute basic operations? In this course we will

get to know the fundamental building blocks of computerized systems. We will learn how data is presented

in binary systems and will learn about the basic logic gates that allow us to process information of any kind:

numbers, letters, music, pictures etc.

The following topics will be covered: Binary numbers and binary systems- number-base conversions,

complements. Logic gates. Boolean algebra and basic theorems. Boolean functions: canonical forms,

standard forms. Combinatorial logic: SSI, MSI, LSI, arithmetic units. Serial logic: memory and scheduling

units.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 19 of 44

Discrete Mathematics Course code:
10202011

4 credits

Prerequisites: None Year 1 – Semester
1

Lecture:

Tutorial:

Dr. Eran London, Dr. Malka Rozenthal, Dr. Idan
Telshir

Elad Chasin, Hadasa Sharvit

3 weekly hours

2 weekly hours

The course begins with the fundamentals of the language of mathematics. It presents the rules of the game
including basic concepts for mathematical studies in general and in particular for theoretical computer
science.

The first chapter, Mathematical Logic, clarifies what a mathematical proposition is and what a

mathematical theorem is. What is a mathematical proof, and what are the possible ways to construct a

proof? The chapter includes the following subjects: preface, propositional calculus, logical connectives,

logical equivalence, tautology and contradictions, proof by contradiction, complete sets of connectives,

DNF, and CNF propositions. Predicate calculus, logical quantifiers, logical equivalence.

The second chapter, Set Theory, deals with the central concepts of the course, and various operations on

and between sets. At first, we discover that not every expression defines a set (the Barber Paradox). Later

we deal with basic concepts and basic operations (set, element, subset, powerset, universal set,

intersection, union, complement, symmetric difference, Cartesian product). We represent sets using

graphic tools such as Venn diagrams.

The chapter on Binary relations, opens a window to several main directions in the studies of mathematics:

It allows the definition of an equivalence relation, an ordered set, (and from it the concept of induction) and

a function (a graph of a function, range, domain, injective function, surjective function, function composition,

inverse function, permutations, characteristic functions.) Those concepts will enable us to define the size

of the set.

In the chapter on Combinatorics, we will deal with the sizes of sets. We will understand how a child learns

to count (and to calculate the size of a set), and following him, we will also do so. We will meet the

pigeonhole principle and calculate the number of ways the coat-check attendant in the theater cloakroom

can return coats to a group of persons so that not even one member of the group will not return home with

his own coat (counting methods, binomial theorem, combinatorial identities, Inclusion–exclusion principle.)

Mathematical Tools for Computer Science

(Introduction to Analysis)

Course code:
10201021

4 credits

Prerequisites: None Year 1 – Semester
1

Lecture:

Tutorial:

Dr. Laure Barthel, Dr. Freda Rybnikova, Dr. Nissim
Harel

Dr. Dvora Ross, Leah Butt, David Spindle

3 weekly hours

2 weekly hours

This is the first course in a series of math courses. It focuses on the mathematical tools required to describe

geometric objects in the plane and in the space and the basic concepts of functions.

Analytical geometry in the plane and in the space: vectors, dot product, cross product, lines and planes.

Basic equations and properties of conic sections. Complex numbers: basic definitions and properties, the

Gaussian plane, polar representation, roots of unity. Functions: basic properties, graph, translation of a

graph, composition of functions. Limits of functions: intuitive definition using numerical and graphic

examples, computation of limits of rational functions using polynomial division. Derivative: definition,

meaning and differentiation rules.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 20 of 44

Linear Algebra A Course code:
10201071

4 credits

Prerequisites: None Year 1 – Semester
1

Lecture:

Tutorial:

Dr. Arie Yakir, Dr. Dvora Cohen, Dr. Arie Yakir

Dr. Dvora Cohen, Dr. Dvora Cohen

3 weekly hours

2 weekly hours

This is a basic math course that deals first with systems of linear equations with any number of variables.

The material taught in this course is essential for further courses in mathematics and computer science.

We shall learn how to use basic mathematical tools such as matrices, coordinates, transformations

(reflection, rotations, projections and more).

Topics covered: Fields. Systems of linear equations over a field. Matrices. Elementary operations,

elementary matrices, and matrix multiplication over a field and over a ring. The determinant of a matrix.

Vector spaces: subspaces, bases, dimension. Row space, column space and null space of a matrix.

Coordinate matrix. Linear maps: kernel and image, arithmetic of linear transformations. Representations of

linear transformations by matrices, properties of the representation. Lagrange interpolation. The

determinant as a volume function.

Mathematics Workshop A Course code:
10208021

No credits

Prerequisites: None Year 1 – Semester
1

Lecture: Oded Gutman, Leah Butt, Tuval Coleman 2 weekly hours

The workshop helps students cope with the nature of post high school math. Highlights in the workshop are

the concept of mathematical proof, the correct use of mathematical language, and various problem-solving

techniques.

Modular Programming Course code:
10208021

5 credits

Prerequisites: Introduction to Computer Science Year 1 – Semester
2

Lecture:

Tutorial +
Workshop:

Dr. Yoram Biberman, Dr. Dvora Ross, Tzvi Melamed

Micha Brenig, Amitai Ben-Nun, Nurit Keratin, Micha
Brenig

4 weekly hours

2+3 weekly hours

This course directly follows 'Introduction to Computer Science'. As such, it follows the programmatic

evolutionary journey on to the modular paradigm, and to the very edge of object-oriented programming.

The course touches on computer science as a form of science by discussing various data structures:

especially lists and trees (from a programming perspective) and their effectiveness; and classical

algorithms. The course elaborates on the role of pointers in the C programming language (for defining

dynamic arrays, lists, trees, and generic, polymorphic programming). The course elaborates on “proper

programming”, including on program testing, and writing libraries.

Topics covered: Handling external files (opening/closing for reading/writing, get/put pointers, reading and

writing on the same file simultaneously). Dynamic array allocation (including: definition, dynamic memory

allocation, memory release, pointer arithmetic, differences between static and dynamic memory allocation,

transferring/returning pointers from functions, pointer to pointer) structures. Linked lists (including merge

sort of lists, handling lists through pointer to pointer). Binary trees (mainly binary search trees, including

insertion, search, deletion, and various tree algorithms). Functions pointers (and writing callback functions).

Generic (void *) pointers and their use for writing polymorph programs in C language (also with function

HAC - Computer Science B.Sc. and M.Sc. Programs Page 21 of 44

pointers). Program division into files, statement versus definition, preprocessor guidelines, and use of

makefile. The compilation and linking process in C. Namespaces. Handling exceptions. Various topics: C++

strings, inline functions, function overloading, assert, sizeof, typedef Libraries: standard C libraries, build

and add, static and dynamic library. Library use. Software testing methods (such as valgrind). scanf/printf,

argc/argv. Template functions. Linux programming tools, including debuggers.

Hardware Systems, Software & Programming in
Assembly Language

Course code:
10203021

4 credits

Prerequisites: Digital Systems Year 1 – Semester
2

Lecture: David Cohen, Dr. Ayelet Goldstein, Alba Slavin,
David Cohen

4 weekly hours

When speed is important to the success of the system – in games, film processing, medical equipment,

robots – matching software to computer hardware is a critical component of design. In this course we will

learn how to relate to the PC using its own language and know how to intervene between C language

programming and running the software on the hardware.

Topics studies: Introduction to computer organization and microprocessors, Von Neumann structure,

software hierarchy, command structure and machine language, accumulators, methods of addressing,

stacking, interruptions, memory management. 8086 processor review: assembly language programming,

machine language translation, running program structure. Operating system services: keyboard reading,

on-screen viewing, file access, loading and running programs. Analysis of C language programs after

compilation: data frame, dynamic variables, functions, parameter transfer, recursion. Review of IA-32 (Intel

32/64-bit Processor Structure), 32-bit assembly programming in Linux environment, connecting assembly

language functions to C language programs.

Introduction to Theoretical Computer Science

(Discrete Mathematics B)

Course code:
10202021

4 credits

Prerequisites: Discrete Mathematics Year 1 – Semester
2

Lecture:

Tutorial:

Dr. Eran London, Malka Rozenthal, Dr. Idan Telshir

Elad Chasin, Ayelet Amsalem

3 weekly hours

2 weekly hours

The course includes several different chapters dealing with basic aspects of modern computer science.

The course offers students a glimpse of the various fields and builds a solid foundation for their studies.

1. The concept of infinity. What does it mean? Is there more than one infinity? Is there a “smallest” infinity?

Does every infinity have a “larger” infinity? During discussions we will introduce the following concepts:

infinite sets, countable sets, Cantor's diagonal argument, the cardinality of a power set (Cantor's theorem),

Bernstein-Schroder's theorem.

2. Graph theory. We will present various problems using graphs and try and solve them in a generalized

way. Some of the questions we will cover: How can the world map be clearly displayed using only a few

colors? What bothered Euler when he went out for a walk in his city? How can you help the younger

generation in the matchmaking world? Can the Internet ensure that messages are delivered quickly, and

how? How many roads does Jerusalem need to maintain so it is possible to drive from the city center to

every intersection in town? The technical concepts we will encounter include the following: definitions

(vertex, edge, simple graph, directed graph, path, circle, simple circle, polygon), connected component,

connectivity, tree, forest, number of edges and vertices in a tree, planar graph, Euler formula for planar

graphs, graph coloring, coloring number, matching, Hall's marriage theorem.

3. Introduction to Discrete Probability Theory. We will understand how probability theory connects to

day-to-day operations: how to design a poll and what is its credibility? How can one play poker over the

Internet? Can a coin be tossed fairly when the partner cheats? Is a student with a higher grade point

HAC - Computer Science B.Sc. and M.Sc. Programs Page 22 of 44

average than another student also a better student? How can we ensure that the Internet does not crash

when several lines of communication are torn? We will meet the following technical concepts: discrete

probability spaces, independent events and conditional probability, random variables and expected value,

distribution and variance, basic inequalities.

4. Growth rate of functions. How do you determine that one algorithm is more effective than another?

What can you do with your computer? Is it enough to be a good programmer to solve any problem? We

define and deal with the following concepts: order of magnitude of functions and sequences, asymptotic

behavior, approximate solution of recurrence formulas.

Calculus: Single Variable Calculus Course code:
10201031

4 credits

Prerequisites: Mathematical Tools for Computer Science Year 1 – Semester
2

Lecture:

Tutorial:

Ronit Katz, Dr. Freda Rybnikova, Dr. Nissim Harel

Dr. Dvora Ross, Shira Shvets

3 weekly hours

2 weekly hours

The course introduces students to the core ideas of analysis and shows how they can explore the properties

of functions.

Real numbers: Properties of real numbers, intervals, absolute value, upper bound, lower bound.

Comparison of the number concept in math and programming.

Limits of a function: How to ensure that the output of a function is within the desired range while controlling

input? We will see how the formal definition of the bound is the mathematical answer to this computational

problem.

Continuous functions and derivative of a function: We will see what can be learned about a function

from its limits and derivatives. Intermediate Value Theorem and Weierstrass theorem. Rolle's Theorem,

Lagrange’s mean value theorem, study of functions (intervals of increase and decrease, extrema, convexity,

asymptotes), L'Hôpital's rule. Monotonic functions. Theorems about inverse functions, inverse trigonometric

functions, the logarithm function and the exponential function).

Integrals: Definite integrals, indefinite integrals and the relationships between them.

Linear Algebra B Course code:
10201081

4 credits

Prerequisites: Linear Algebra A Year 1 – Semester
2

Lecture:

Tutorial:

Dr. Arie Yakir, Dr. Dvora Cohen, Dr. Arie Yakir

Dr. Dvora Cohen, Dr. Dvora Cohen

3 weekly hours

2 weekly hours

This course is a continuation of Linear Algebra A. Topics covered in this course: Eigenvalues and

eigenvectors. Diagonalizable matrices and operators. Inner product spaces over the Real Field and over

the Complex Field. Orthonormal bases and the Gram-Schmidt orthogonalization process. Geometry of

inner product spaces. Fourier coefficients. Best approximation in finitely generated subspace. Orthogonal

matrices and orthogonal transformations. A short introduction to affine geometry.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 23 of 44

Mathematics Workshop B Course code:
10208031

No credits

Prerequisites: Mathematics Workshop A Year 1 – Semester
2

Lecture: Oded Gutman, Hadasa Sharvit 2 weekly hours

This workshop helps students cope with the nature of post high school math. The workshop covers the

concept of mathematical proof, correct use of mathematical language, and various problem-solving

techniques.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 24 of 44

BSc Second Year

Introduction to Object Oriented Programming &
Software Engineering

Course code:
10204032

5 credits

Prerequisites: Introduction to Computer Science, Modular
Programming, Data Structures (participation)

Year 2 – Semester
1

Lecture:

Tutorial +
Workshop:

Michal Alhanaty, Rachel Shapira, Zvi Melamed

Yehezkel Bernat, Amitai Ben-Noon, Matan Perel, Ruti
Bornstein

4 weekly hours

2+2 weekly hours

How are large-scale and complex applications developed? How do you make the applications complete

and general? What is the key to clear, convenient and easy to maintain programming? Answers to these

questions are the basis for Object Oriented Programming & Software Engineering. The course will study

the principles while applying them in C++. The course will be accompanied by examples and exercises of

complete applications with their variety of components: data structures, algorithms, artificial intelligence,

interface, graphics, information security, performance and more. The acquisition of principles, this

semester, will be mainly around the tools of classes, inheritance, polymorphism, UML diagrams, and

introduction to design patterns.

System Programming & Introduction to Parallel
Programming

Course code:
10203052

5 credits

Prerequisites: Introduction to Computer Science, Modular
Programming, Hardware Systems, Software &
Programming in Assembly Language

Year 2 – Semester
1

Lecture:

Tutorial +
Workshop:

Dr. Yoram Biberman, Michal Goldstein, Dr. Udi Conly

Tamar Bash, Tamar Bash, David Spindle

4 weekly hours

2+2 weekly hours

How is it possible to write a program that reads data from two sources at the same time? In general:

performs several tasks in parallel and in a coordinated manner? How can we make good use of multiple

processors?

The course includes two parts: a programming component that presents the Unix's system calls, and

inter-process communication (IPC) tools, and a theoretical component that discusses the basics of

operating systems, especially processes and threads.

Topics covered: Introduction to operating systems. Topics in architecture relevant to operating systems

(in particular an interrupt). Processes (including process creation in Unix: fork(), exec()). Communication

between processes in Unix (signal, pipes, named pipes, message queues, sockets, shared memory).

Threads (including the pthreads library). Processor scheduling (especially on Linux). Process

synchronization (especially semaphore in theory, and in Unix and pthread). Mutual exclusion. Parallel

programming paradigm: options and challenges.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 25 of 44

Data Structures Course code:
10202032

4 credits

Prerequisites: Linear Algebra A + B, Discrete Mathematics,
Introduction to Theoretical Computer Science

Year 2 – Semester
1

Lecture:

Tutorial:

Dr. Eran London, Dr. Gili Scholl, Efi Naftali

Chaya Zilberman, Esther Meisel, Moshe Munk

3 weekly hours

2 weekly hours

We will work on ways to effectively represent information on the computer so that solving problems is fast

and cost-effective. We will encounter stacks, queues, linked lists, rooted trees, heaps and priority queues.

The course will cover the following topics:

• Sorting issue: How to sort a data set conveniently and quickly? We will encounter various (and

often strange) solutions that address different problems: insertion sort, selection sort, heapsort,

mergesort and quicksort. We will encounter lower bounds for sorting. We will deal with the expected

running time of quicksort. We will conclude with linear sorts: counting sort, radix sort and bucket

sort.

• Dynamic data structure search problem: How can a (“huge”) phonebook be presented on a

computer, be continuously updated and searched quickly? We will meet binary search trees,

especially balanced trees (such as a red-black tree).

• What is the appropriate data structure for managing a “small” pool of unexpected items (such as

rooms in a hotel chain that should be able to accommodate every possible visitor)? We will study

hash tables and hash functions. We will see how a whole encyclopedia can be stored on DVD so

that the search time for each entry is very short.

• What is the most effective way to compress data so that it does not “take up” a lot of memory

space? This was answered by Huffman codes.

• What is the most convenient way to travel in a foreign city so that we learn it perfectly, and how

does it relate to the wave movement in a lake and solving mazes? We will answer this through

breadth first and depth first searches in graphs.

• How can a minimal investment in road construction be ensured without interfering with the flow of

traffic between any two points in the city?

• How can the distance between any two cities in the country be calculated, given that we are only

given the lengths of roads between adjacent intersections? How does this relate to the international

currency market?

Infinitesimal Calculus: Integral Uses &
Approximate Calculations

Course code:
10201042

4 credits

Prerequisites: Infinitesimal Calculus: Single Variable Calculus Year 2 – Semester
1

Lecture:

Tutorial:

Dr. Laure Barthel, Dr. Malka Rozenthal, Dmitry
Goldstein

Hadasa Sharvit, Boris Kanevsky

3 weekly hours

2 weekly hours

Integral Uses: With integrals you can calculate many geometric data, such as the area between curves or

the volume of a solid. We will also see when the integral can be generalized to infinite cases.

Area and volume calculations, volume of solids of revolution. Improper integrals.

Approximate Calculations: How can a computer calculate sin x if it only knows how to add and multiply?

How do we calculate the value at which a function vanishes if we do not have a formula? The second part

of the course addresses such questions. We will use graphic and numerical software to illustrate the

concepts.

Sequences: definition, limits , Cauchy sequence, sequences defined by a recurrence relation. Series:

definition, convergence (absolute and conditional), convergence tests, Leibniz series. Taylor polynomial.

Taylor series of function and convergence to the function. Power series: definition, radius of convergence,

HAC - Computer Science B.Sc. and M.Sc. Programs Page 26 of 44

interval of convergence, differentiation and integration of power series, representation of elementary

functions as power series, application of power series to the computation of approximations, and the solving

of differential equations. Numerical analysis: bisection method, the Newton–Raphson method, iterative

method, Newton–Cotes numerical integration (the trapezoid rule, the Simpson’s rule).

Algebraic Structures Course code:
10201092

4 credits

Prerequisites: Mathematical Tools for Computer Science, Linear
Algebra A + B

Year 2 – Semester
1

Lecture: Ronit Katz, Ronit Katz, Dr. Arie Yakir 4 weekly hours

In this course we will study mathematical topics that are needed in computer science, in particular for the

study of algorithms, cryptology, and error correcting codes. Topics covered: Groups: definition of a group

and a subgroup, the symmetric group, homomorphism and isomorphism, permutation representation of a

group, orbits, right and left cosets, quotient group, the fundamental theorem of homomorphism. Rings:

definition of a ring and a subring, ideal, integral domain, field, rings of polynomials, Euclidean rings, principal

ideal domain, quotient ring, construction of finite fields. Number theory: the extended Euclidean algorithm,

congruence. Fermat theorem, Euler theorem, Wilson theorem, Chinese remainder theorem, quadratic

residues, discrete Fourier transform.

Scientific Writing & Presentation – Group 1 Course code:
10206252

2 credits

Prerequisites: None Year 2 – Semester
1

Lecture: Sofie Chazanov, Dr. Simcha Rozen, Dr. Ariel
Furstenberg

2 weekly hours

Technical and scientific writing has become an important skill for computer science students and graduates.

The aim of the course is to develop scientific writing and scientific presentation skills. The following topics

will be covered: reading academic papers in computer science, characterizing of scientific writing, active

reading. The structure of the scientific paper and the principles of writing a summary of a paper. Techniques

of effective search in databases and search engines. Preparing a written academic presentation. During

the course we will practice these various skills by writing reports, selecting a paper and presenting it to the

class.

Object Oriented Programming and Game
Development

Course code:
10204042

5 credits

Prerequisites: Introduction to Object Oriented Programming &
Software Engineering

Year 2 – Semester
2

Lecture:

Tutorial +
Workshop:

Michal Alhanaty, Rachel Shapira, Zvi Melamed

Yehezkel Bernat, Amitai Ben-Noon, Matan Perel, Ruti
Kleinman

4 weekly hours

2+2 weekly hours

Pac-Man, Digger, GTA (Grand Theft Auto), Lemmings and many other computer games are examples of

worlds with objects, actions, and interactions. Applications of this type clearly demonstrate the ideas,

principles and challenges that exist in object-oriented programming. The course will cover advanced object-

oriented programming topics such as: templates, iterators, use of existing libraries and design patterns.

The programming experience will include applications from the world of computer games based on data

structures and algorithms taught in theoretical courses.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 27 of 44

Scripting Operating Systems & Programming Course code:
10203062

5 credits

Prerequisites: Introduction to Computer Science, Modular
Programming, Hardware Systems, Software &
Programming in Assembly Language, System
Programming & Introduction to Parallel
Programming

Year 2 – Semester
2

Lecture:

Tutorial +
Workshop:

Tamar Bash, Michal Goldstein, Dr. Ehud Conley

Ruti Bornstein, David Spindle

4 weekly hours

2+2 weekly hours

How does the operating system manage main memory? How is disk organized? What is a directory? How

can you make sure that even if the disk crashes the contents of the files will not be lost? What happens

when mapping a file to memory? What happens when we turn on the computer? The course will answer

these and other questions.

Studies topics: Main memory organization (including: swapping, paging, segmentation, demand-paging).

File system (including NFS, log-based file system). Disk management and scheduling. Management of

swap area. Caching and buffering. RAID organization. Input/output systems (theoretical and Unix). Unix file

system management (including: device nodes, soft\hard link) Unix file and directory handling: open(),

creat(), read(), write(), lseek(), fcntl() in particular to lock files and handle status flags, umask(), access(),

chmod(), stat(), rename(), unlink(), opendir(), readdir(), mkdir(). Memory mapped files: mmap(). Familiarity

with shell programming using Python language. Methods for dealing with mutual exclusions (Banker’s

algorithm, detection recovery from mutual exclusion) processor scheduling in theory and Linux. Introducing

cygwin software.

Algorithms Course code:
10202042

4 credits

Prerequisites: Linear Algebra A + B, Discrete Mathematics,
Introduction to Theoretical Computer Science,
Algebraic Structures, Data Structures

Year 2 – Semester
2

Lecture:

Tutorial:

Dr. Eran London, Dr. Hadasa Yakobovich, Efi Naftali

Haya Zilberman, Esther Meisel, Moshe Munk

3 weekly hours

2 weekly hours

We will deal with many practical problems from all areas of computer science and find out how to approach

them and to solve them. We encounter broad fields and topics. The solutions are based on all the

mathematics and theory taught in previous courses.

Among the topics we will address are the following:

• What is an algorithm? What are the resources and prices (time, place)?

• What do we mean by “divide and conquer”? How does one solve a problem by dividing it into

“smaller” problems?

• How to quickly identify a short word in a huge file? (Fast Fourier Transform and its applications).

• Which sculptures will Ali Baba choose when he breaks into the museum? (dynamic programming,

knapsack problem).

• Should we be greedy and when?

• How do you route trucks on a road network and how does this relate to Hall's marriage theorem

and solving Sudoku? (flows in graphs).

• What is modern cryptography? Why do we agree to provide our credit card information over the

internet where it is visible to all and why did our ancestors not do so? (RSA cryptosystem, Rabin

cryptosystem).

• In what way is a gambler preferable on a standard "solid person"? How does randomization help

solve difficult problems?

HAC - Computer Science B.Sc. and M.Sc. Programs Page 28 of 44

Infinitesimal Calculus: Curves & Surfaces Course code:
10201052

4 credits

Prerequisites: Linear Algebra A + B, Infinitesimal Calculus: Integral
Uses & Approximate Calculations

Year 2 – Semester
2

Lecture:

Practice:

Dr. Laure Barthel, Dr. Malka Rozenthal, Dmitry
Goldstein

Ronit Katz, Ayelet Amsalem, Boris Kanevsky

3 weekly hours

2 weekly hours

In this course we will learn how the ideas of analysis can be used to study curves and surfaces defined by

parametric equations or by equations. Graphic software is widely used to illustrate the concepts.

Topics covered: Vector functions: smooth parametrization, tangent vector, normal vector, binormal vector,

re-parametrization, arc length, curvature. Functions of several variables: limits and continuity, partial

derivatives, directional derivatives, differentiability, chain rule, gradient, maxima and minima, Lagrange

multipliers. Curves and Surfaces: definition by parametrization or equation, tangent line or plane. Multiple

integrals: computation, Fubini's theorem, change of variables in double integrals (mainly to polar

coordinates).

Probability Theory Course code:
10201102

4 credits

Prerequisites: Mathematical Tools for Computer Science, Calculus:
Integral Uses & Approximate Calculations, Calculus:
Curves & Surfaces (can be studied simultaneously),
Discrete Mathematics

Year 2 – Semester
2

Lecture: Dr. Ayelet Goldstein, Dr. Ayelet Goldstein, Shmuel
Dahan

4 weekly hours

In recent years, understanding the laws of probability theory has become essential for the development of

fast and efficient algorithms. Probability algorithms, that is, algorithms that make random choices during

their run, prove to be a cost-effective way to solve problems that would otherwise not be solvable in a

reasonable time. In this course we will discuss the basics of probability theory and learn how to make

calculations and assessments under conditions of uncertainty.

Topics covered: repeat of discrete uniform distribution: probability space. Conditional probability. Bayes

formula. Independence. A family of independent events. Probability mass function of random variable,

cumulative distribution function. Expected value and variance of a random variable. Mathematical

properties. Expected value of a random variable function. Special discrete distributions: Bernoulli, Binomial,

Geometric, Discrete, Hypergeometric, and Poisson random variables. Continuous random variables:

probability density function of a continuous random variable. Cumulative distribution function. Variance and

expected value. Special distributions: continuous uniform, exponential and normal. Discrete and uniform

two-dimensional random variable: joint probability function of a pair of random variables, marginal

distribution, conditional distribution. Conditional expected value as a random variable. Law of total

expectation and its applications. Distribution of functions of random variables: sum distribution. Probability

inequalities. Expected value and variance of sum. Independent and uncorrelated random variables. Central

bound theorem. Advanced topics: entropy of a random variable. Stochastic processes. Markov chains and

their applications in computer science.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 29 of 44

Scientific Writing & Presentation – Group 2 Course code:
10206252

2 credits

Prerequisites: None Year 2 – Semester
2

Lecture: Sofie Chazanov 2 weekly hours

Technical and scientific writing has become an integral part of the professional world of computer science.

The aim of the course is to develop writing and presentation skills required during both the degree and

professional life after graduation. The course will focus on the following topics: reading articles in the field

of computer science, characterizing scientific writing, dealing with article reading and turning reading into

active learning. The structure of the scientific paper, the principles of summary and academic experience.

Informed searches in databases and search engines. Presentation construction. During the course we will

practice these various skills by writing reports, selecting an article and presenting it to the class.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 30 of 44

BSc - Third Year

BSc - Third Year – Mandatory Studies

Internet Programming A Course code:
10204053

4 credits

Prerequisites: Introduction to Object Oriented Programming &
Software Engineering, Object Oriented Programming
& Game Development

Year 3 – Semester
1

Lecture: Dr. Solange Karsenty, Lior Grosman 4 weekly hours

The course provides knowledge for the development of websites, with an emphasis on user friendly,

interactive and responsive websites. The course covers mainly client-side technology, but also server side-

technology: markup languages, scripting languages, network protocols, interactive graphics, event-driven

programming, and databases.

On the client-side this includes: HTML5, CSS3, JavaScript and libraries such as Twitter Bootstrap or React.

On the server-side this includes HTTP and networking, database management, building components such

as user registration and authentication, validation, dynamic content management, database search,

shopping carts. We will learn to develop systems based on the Model-View-Controller architecture, using

frameworks and libraries such as NodeJS.

Computer Networking Course code:
10203083

4 credits

Prerequisites: System Programming & Introduction to Parallel
Programming, Scripting Operating Systems &
Programming

Year 3 – Semester
1

Lecture: Amiel Lieber, Avigail Gertie, Amiel Lieber 4 weekly hours

Using the Internet is a daily part of our lives, and programming in a networked environment is a basic skill

in software system development. Proper use of network infrastructure is an important factor in creating a

successful experience. In this course, we will explore the essentials of computer networking and the

integration of data transfer systems, voice calls, and multimedia.

Topics covered: Basic concepts in communication and open network models, network applications,

management of information transfer, communication between different programs, reliability and end-to-end

quality of service, routing of messages in heterogeneous networks, local networks, wired and wireless

physical communication. In each chapter, we will highlight the practical methods and protocols of Internet

communication and local networks.

Computer Architecture Course code:
10203072

3 credits

Prerequisites: Hardware Systems, Software & Programming in
Assembly Language

Year 3 – Semester
1

Lecture: Dr. Martin Land, Dr. Ayelet Goldstein 3 weekly hours

Architecture is the field of computer science that provides a platform for practical realization of innovations

in programming and algorithms. The huge increase in the number of lines of code in today's complex

software systems is only possible thanks to a parallel increase in hardware speed.

In this course you will become familiar with the professional techniques in computer architecture and the

essentials of existing technologies in modern computers.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 31 of 44

Topics covered: Review of computer organization, instruction set architecture, measurements and

benchmarks, performance theory and quantitative analysis of methods for executing microprocessor

commands, the transition from CISC to RISC methods, pipelining and bound analysis, computer account

and ALU planning, methods for managing memory and cache methods, internal communication on the

motherboard, superscalar systems, multicore processors, the PC today as realization of architecture

achievements.

Automata and Formal Languages Course code:
10202053

3 credits

Prerequisites: Discrete Mathematics, Introduction to Theoretical
Computer Science, Data Structures

Year 3 – Semester
1

Lecture: Dr. Faraj Shiban, Dr. Esther David, Dr. Faraj Shiban 3 weekly hours

A formal language is a collection of strings that have a particular trait, or a certain structure, for example,

prime numbers, or words of equal length with the same letter at the beginning and end, and the like. Almost

every mathematical problem can be presented as a language in a way that solving the problem is reduced

to deciding whether a given word is or is not in a given language. In this course we will introduce and study

mathematical models of computing machines that can solve such decision problems. We will discuss the

computational power of each of these models and characterize the types of languages it can recognize.

We’ll start with the model of finite state automaton. This is a simple computer, with finite and restricted

memory. Finite state automata capture only a small set of algorithms, but they are useful in simple

procedures in string matching algorithms. Languages that can be recognized by such automata are called

“regular languages”. Later we’ll introduce a stronger model, with infinite memory but with limited and

conditioned approach to memory, called “pushdown automaton”. This model can solve decision problems

that cannot be solved by finite state automata, and they are very useful in parsing algorithms. A push down

automata has an equivalent counterpart called “context free grammar”. This is yet another model of

computation, it consists of a finite set of “grammatical rules” of special type, and it represents the language

of all strings that can be derived from a “start symbol”, using the given rules. The languages that can be

“generated” by context free grammars are exactly the languages that can be recognized by pushdown

automata, and they are called “context free languages”.

In this course we concentrate on two families of languages: regular languages and context free languages.

We’ll study and become familiar with many structure features of languages in each of these two families,

and discuss various decision problems regarding their structure.

Logic for Computer Science Course code:
10202073

3 credits

Prerequisites: Discrete Mathematics, Introduction to Theoretical
Computer Science

Year 3 – Semester
1

Lecture: Efi Naftali, Alba Slavin, Dr. Yermiyahu Kaminski 3 weekly hours

What is “proof” in math? When is a mathematical claim said to be “correct”? Can any correct claim be

proved? And is what can be proved necessarily true? In this course we will get down to the basics of

mathematics, define the most basic concepts like “proof” and “correctness” and understand the relationship

between the two.

We’ll start with very simple mathematical language (propositional calculus), we will learn to formulate

mathematical arguments using “connections” that connect basic claims to more complex ones. We'll see a

way to write uniform formulas (normal form), which makes it easier to handle. We will discuss different

groups of connections, and when such a group makes it possible to create all possible arguments (“whole

group” and “limited group” of connections). We will define what “correctness” is (names and true values)

and what “proof” is; we will get to know tools for creating proof (rule of inference and proof from a premise).

We will prove that everything that is proven is “correct” (soundness theorem) and that everything that is

HAC - Computer Science B.Sc. and M.Sc. Programs Page 32 of 44

correct can be proven (completeness theorem). We will prove the compactness theorem which says that if

a claim comes from an infinite set of assumptions, it already results from a finite subset of assumptions.

We will understand that there is currently no practical way to decide for each formula if it is correct and we

will recognize a sub-family of formulas (Horn) for which this is possible.

The “composite relations” language allows for much more composite mathematical arguments, we will go

through the whole process with this language too, talk about correctness versus proof, soundness theorem

and completeness theorem (without proof), and compactness theorem. We will learn about Peano axioms

and the standard model of natural numbers, and Gödel's incompleteness theorems (unproven) that say

that in the above system of natural numbers there will always be something that neither it or its negation

can be proven, and that the system cannot be expected to prove what we have proven to be true!

Later we will discuss even more complex languages that allow for relative correctness of time (temporal

logic), and languages that extend the concept of right / wrong, and also allow something in the middle.

Internet Programming B Course code:
10204153

4 credits

Prerequisites: Introduction to Object Oriented Programming &
Software Engineering, Object Oriented Programming
& Game Development, Internet Programming A

Year 3 – Semester
1

Lecture: Dr. Solange Karsenty, Lior Grosman 4 weekly hours

This course focuses on advanced Java technologies for the development of websites, with an emphasis on

server-side components such as database management, communication, security, and REST web

services.

The course details Java programming principles and technologies for building dynamic websites, network

programming, concurrent programming, Servlets and the Spring framework and template engines.

Combining technologies with the material taught in the first course (Internet Programming A) results in

designing and building complete websites, providing highly interactive pages based on advanced server

side components. The course ends with the construction of an mini website that incorporates all the

technologies learned.

Databases Course code:
10204073

4 credits

Prerequisites: Discrete Mathematics, Introduction to Theoretical
Computer Science

Year 3 – Semester
1

Lecture: Dr. Simcha Rozen, Dr. Simcha Rozen, Dr. Yoram
Biberman

4 weekly hours

Large software systems handle a huge amount of data. The systems must be able to retrieve the data

efficiently and quickly, as otherwise their performance will be unreasonable. The course presents theoretical

models for handling a large amount of data, and their practical applications. For example: How can we

retrieve data using different characterizations? How should the system organize the data so it can be

retrieved efficiently? How do we make sure that if only one ticket is left on a flight, it will not be sold, at the

same time, to two different customers by two travel agents? How do we make sure that even if the computer

crushes after a customer withdraws money from an ATM his account will be charged the withdrawal?

Topics covered: Introduction to databases. The Relational model. Relational algebra. The Tuple Relational

Calculus. SQL. Integrity constraints and database design (keys, functional dependencies, normal forms:

BCNF, 3NF). Entity-Relationship Model. Transaction processing, concurrency control (serializability,

conflict serializable schedules and view serializable schedules, protocols ensuring serializability: lock bases

protocols (e.g. 2PL) , and timestamps base protocols).

The course makes use of PostgreSQL database management system.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 33 of 44

Computability & Computational Complexity Course code:
10202063

3 credits

Prerequisites: Algorithms, Logic for Computer Science, Automata
and Formal Languages

Year 3 – Semester
1

Lecture: Dr. Faraj Shiban, Dr. Esther David, Dr. Faraj Shiban 3 weekly hours

This course us about studying the limits of what can be done by computers. Even if we have all the time

in the world, not everything is doable! In this course we will demonstrate, for example, that no computer

program can be written that does the following: give it a computer program A and input X for A, and our

program must say if the input X enabled on A has a “bug”. In order to be able to prove this we need an

exact workable definition of “what is computer” or “what is computation”.

“Turing Machine” is the theoretical computer invented by Alan Turing (German Enigma Cipher Breaker) in

1936. It is regarded (by Church Turing Thesis) as a formal definition of “computer” and/or of “computation”.

A problem is considered “solvable” if there is a TM that solves it, and a function is regarded “computable”

if there is a TM that computes it.

 The material in this course is divided into three chapters:

Chapter 1. The Church Turing Thesis: this is an introductory chapter, in which we introduce several versions

of TM’s and prove that the various versions are equivalent in their computational power.

Chapter 2. Decidability: In this chapter we discuss solvability of decision problem by computer, without any

consideration of the computational resources needed for the solution (such as running time or size of

memory). We discuss three classes of problems: R, RE, and co-RE, and we learn to distinguish between

solvable, partially solvable and unsolvable problems. In this chapter we talk about theoretical solvability,

without considering the practicality of the solution.

Chapter 3. Tractability: In this chapter we will learn to distinguish between problems that can be solved

efficiently (polynomial time complexity, logarithmic space complexity), and problems whose solution

requires exponential running time, or exceptionally large memory. We discuss various complexity classes

such as P, NP, co-NP, PSPACE, L, NL, and study the interesting phenomenon of NP-completeness,

and completeness in other complexity classes. We will see that many of the questions we face here do not

currently have an answer, and probably never will.

Final Project Course code:
10204143

8 credits

Prerequisites: Completion of second year mandatory courses Year 3 – Annual

Lecture: Dr. Yoram Yekutieli, Dr. Simcha Rozen, Dr. Yoram
Yekutieli

Prof. Michael Berman

Prof. Michel Bercovier

Dr. Michal Alhanaty

Dr. Ayelet Goldstein

Dr. Yoram Yekutieli

Dr. Martin Land

Dr. Solange Karsenty

Or Kadrawi

Avigail Rabin Hefner

12 weekly hours

Have you always dreamed of developing an original app for iPhone or playing with camera-guided robots?

The final project is your opportunity to develop advanced applications from concept to implementation. The

project is, on the one hand, an opportunity for independent work and, on the other hand, is supervised and

accompanied at each stage of planning and execution. As part of the project, you will be able to bring your

HAC - Computer Science B.Sc. and M.Sc. Programs Page 34 of 44

capabilities to fruition and design a respectable “entry ticket” into the industry. Project topics will be selected

by students in coordination with the project supervisors from a variety of fields such as robotics, advanced

user interfaces, internet, graphics, image processing, computer vision, microprocessors and advanced

programming. At the planning stage, students will be required to formulate a project proposal and, after

approval, will proceed to the project execution phase. The implementation phase will focus on project

construction, project review, project documentation, project packaging and project presentation.

Examples of thesis projects from previous years include a cyclist system for Android environment, a

camera-guided robot system for security, an application for correcting spelling and grammar errors, Hebrew

writing and real-time gesture recognition software, training software to help deaf children practice speaking

and more. Some projects are carried out in collaboration with departments of the School of Communication

and Design and the Department of Communication Disorders as well as with external parties such as the

Department of Forensics, Variety Center for Special Needs Children, The Milbat Association and leading

companies in their fields such as Intel, Exodius, Mobileye, and Malam.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 35 of 44

BSc - Third Year – Elective Studies

Courses marked with * will not be offered in 5780 (2020)

Machine Learning 3 credits

Prerequisites: Linear Algebra A + B

Analysis A + B

Year 3 BSc, MSc
Semester 1

Lecture: Dr. Yoram Yekutieli 3 weekly hours

What is Learning? What are learning systems? Can a machine learn and which concepts are learnable?

How can I teach a machine? With what methods and for what problems?

In recent years, it has been demonstrated that not only can machines learn, but that it is an incredibly

essential tool for dealing with complicated problems and the congestion of information that is overwhelming

us. Automated systems that learn to recognize patterns are now an important component of a huge variety

of fields and applications.

In the course we will introduce the field of machine learning and its relation to other areas. We will teach

the following topics through practical examples:

Regression: matching model to data. Mean square error methods. Support Vector machines. Detection (Is

there a face in the picture? Where?), recognition (What is the object in the input, is this a person?)

Identification, individualization (Who is this cat? Is it Mitzi?), supervised learning, classification (Does the

input presented belong to one group or another, is it an orange or an apple?). Nearest neighbors algorithm,

Naive Bayes classifier, decision trees. Artificial neural networks. Unsupervised learning, clustering,

dimensionality reduction, reinforcement learning, probabilistic graphic models, genetic algorithms. Software

libraries including Matlab and Python (scikit-learn) tools that implement learning systems.

Artificial Intelligence in Medicine 3 credits

Prerequisites: Object Oriented Programming & Game Development

Algebra A + B

Year 3 BSc, MSc
Semester 1

Lecture: Dr. Ayelet Goldstein 3 weekly hours

The tasks that physicians are required to perform are many and varied, such as patient screening,

diagnosis, proper and optimal care selection, data analysis, summary information. These tasks require

methodologies from various fields such as computer science, artificial intelligence, statistics and decision

analysis.

In this course we will explore the world of medical decision support systems and the different methodologies

used in this field.

We will study the following topics: Introduction to medical informatics, medical records and standards,

temporal databases, knowledge representation, different types and characteristics of decision support

systems: rule-based systems, knowledge-based systems, medical diagnostic systems. Time-dependent

inference, human judgment biases, decision trees, Bayesian belief networks, abstraction of time-oriented

data, visualization and analysis of time-oriented clinical data, modeling and execution of guidelines, natural

language generation of clinical data.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 36 of 44

Introduction to Information Security* 3 credits

Prerequisites: Linear Algebra A + B, Operating Systems, Computer
Communications, Computer Architecture

Introduction to Encryption must be taken at the
same time

MSc Semester 2

Lecture: Mr. Binyamin Hirshberg 3 weekly hours

Information security objectives, general threats to information systems. The basics of encryption theory,

cryptography engineering: symmetric and asymmetric ciphers (DES, AES), block and stream ciphers

(RC4). Key exchange methods (Diffie-Helman). HASH algorithms for cryptographers and digital signatures.

Public key infrastructure certificates (PKI). Security policies and protection fundamentals: depth protection,

separation of liability and authority, identification, verification, permissions and minimum right principle, Bell

LaPadua model. Concepts and techniques of attacks. Attackers and ethics. Network security basics, SSL

case analysis, computer security basics, operating systems and trusted computing. Android case analysis.

Introduction to Encryption 3 credits

Prerequisites: Algebraic Structures, Algorithms Year 3 – Semester
2

Lecture: Dr. Laure Barthel 3 weekly hours

How do I send a confidential message? How do I sign a message on my computer? How do you share

secrets? How do you prove identity? How do you flip a coin online? In the course we will see some answers.

Topics covered: Classic encryption systems: block cipher, stream cipher, introduction to DES. Public

encryption systems: introduction, RSA algorithm, RSA attacks, discrete log, digital signatures, hash

functions. Elliptic curves and their uses in cryptography. Zero knowledge proofs. Secret sharing. During the

semester, we will cover the mathematical concepts needed for encryption such as the integers modulo n

and finite fields.

Artificial Intelligence (will be taught in 2020 only on Women’s Studies) 3 credits

Prerequisites: Discrete Mathematics, Introduction to Theoretical
Computer Science

BSc – Semester 2

Lecture: Dr. Esther David 3 weekly hours

Introduction to Artificial Intelligence. Troubleshooting. Search methods (non-informational search,

informational search, heuristic search, local search, genetic algorithms). Search under rivalry conditions –

games. Constraint satisfaction issues. Representation and knowledge acquisition through logic. Classic

design. Game theory. Learning from examples. Neuronal networks.

Seminar in Computational Geometry 2 credits

Prerequisites: Algorithms Year 3 – Semester
1

Lecture: Dr. Laure Barthel 2 weekly hours

What is the connection between a giraffe and your nearest post office? How do you program a robot’s

movement? How does the computer know which image you clicked on? How does GPS find the

neighborhood map? You will learn about all these problems and many others in the course. With the help

of these examples, we will introduce some of the techniques and data structures of computational geometry

(for example, sweeping line algorithms, DCEL). Students will prepare a lecture and written work.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 37 of 44

Big Data Seminar 2 credits

Prerequisites:

Lecture: Dr. Ayelet Goldstein 2 weekly hours

The amount of data that is currently accumulating in computer systems is growing at a dizzying pace, to

the extent that traditional data processing applications can no longer cope with them. This reality requires

the ability to process and analyze vast amounts of information in order to draw conclusions.

In the course, we will take a closer look at fundamental topics in the field of information. We will study

current approaches and algorithms used in the field such as: google web search, recommendation systems,

parallel computing, communities in social networks, clustering in big data, computational advertising and

more.

Seminar on Communications & Distributed Systems 2 credits

Prerequisites: System Programming & Introduction to Parallel
Programming, Scripting Operating Systems &
Programming, Probability Theory, Algorithms

Year 3 – Semester
2

Lecture: Dr. Martin Land 2 weekly hours

The seminar will cover advanced topics in modern computer networks. Among the topics we will cover:

protocols for organizing and managing networks, cloud networks, routing and switching integration, high-

speed infrastructure (DSL, optic fibers and more), information security, wireless networks and cellular

systems, performance analysis, and other topics in accordance with the participants' interest.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 38 of 44

MSc Studies
MSc – Mandatory Studies

Courses marked with * will not be offered in 5780 (2020)

Protocols & Computer Networks 3 credits

Prerequisites: Algorithms, Operation Systems, Computer
Networking

MSc – Semester 1

Lecture: Dr. Martin Land 3 weekly hours

Understanding the goals, technologies, algorithms, protocols and systems of computer communication and

internetworking, with an emphasis on reading academic literature and standards documents and

understanding methods for performance analysis and network design. Reading material for the course will

be drawn from “classic” and innovative research articles and RFCs. Through submitting simulation

exercises, students will become familiar with tools for researching networks and understanding their

operation.

Object Oriented Analysis and Design Course code:
10251041

3 credits

Prerequisites: Object Oriented Programming MSc – Semester 1

Lecture: Dr. Solange Karsenty 3 weekly hours

This course aims to provide knowledge, in-depth understanding, and techniques for analyzing, designing,

and building complex object-oriented software systems. The course includes study and practice of object

oriented design principles, design patterns, design by contract, methods for testing and validating software

systems, and aspect oriented programming.

Computational Complexity 3 credits

Prerequisites: Automata and Formal Languages, Computability &
Computational Complexity

MSc – Semester 2

Lecture: Dr. Asaf Nusbaum 3 weekly hours

The aim of the course is to understand the basic issues and main results of the theory of computation, with

an emphasis on sorting computational assignments into those that can be or cannot be effectively

implemented. Main topics of the course: space complexity, Polynomial hierarchy, Cyclomatic (NC)

complexity, random calculations, interactive proofs, PCP theorem and average-case complexity.

Final Project Course code:
10251271

10 credits

Prerequisites: Completion of courses on MSc track MSc – Semester
1/2

Lecture: Dr. Solange Karsenty

Prof. Michel Bercovier

Dr. Yoram Yekutieli

Prof. Michael Berman

Dr. Martin Land

20 weekly hours

Students will define topics for research projects under the academic supervision of faculty members. Project

topics can be theoretical or applied. Students may also take advantage of additional supervision by external

HAC - Computer Science B.Sc. and M.Sc. Programs Page 39 of 44

researchers (academia or industry). The schedule for each project will be jointly built by the student and

the academic supervisor.

Advanced Algorithms* Course code:
10251051

3 credits

Prerequisites: Algebraic Structures, Algorithms MSc – Semester 2

Lecture: Dr. Arie Yakir 3 weekly hours

The fundamental problem of algebra: rings, Euclidean rings, quotient rings. Arithmetic: discrete Fourier

transform, polynomial multiplication, integer multiplication, matrix multiplication, the Chinese remainder

theorem in a Euclidean ring, partial fraction decomposition. Finite fields: construction of finite fields,

polynomial factoring over finite fields (linear algebra-based algorithms), construction of irreducible

polynomials over finite fields. Modern methods for factoring in the ring of polynomials over the integers:

factoring modulo a “large” prime number, factoring modulo a “small” prime number and raising to factoring

modulo a power of the prime. Short vectors in lattices. Computational algebraic geometry: polynomials and

affine varieties, monomial order, division with remainder in the ring of polynomials with several variables.

Hilbert’s basis theorem and Grobner bases, Buchberger’s algorithm, applications in geometry.

Software Engineering* Course code:
10251041

3 credits

Prerequisites: MSc – Semester 1

Lecture: Mr. Yigal Cohen 3 weekly hours

Understanding the application of software engineering in software projects. Establishment of a project work

framework. Implementation of a software project from planning to completion, in practice. In-depth analysis

of the various processes and development stages and the relationships between them. Details of the

actions that support the project (measurements, risk management, quality management and more).

Analysis and comparison of different classical and modern management practices while understanding the

advantages and disadvantages of each and their amalgamation.

Advanced Computer Architecture* Course code:
10251031

3 credits

Prerequisites: Computer Architecture MSc – Semester 1

Lecture: Dr. Martin Land 3 weekly hours

Architecture is the field of computer science that provides a platform for the practical realization of

innovations in programming and algorithms. After a brief summary of topics from the undergraduate course

in computer architecture, the course introduces up-to-date performance enhancement methods:

superscalar processors and instruction level parallelism, branch prediction behavior prediction, trace

caching, multi-core processors and thread level parallelism, parallel programming support.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 40 of 44

MSc – Elective Studies

Courses marked with * will not be offered in 5780 (2020)

Machine Learning Software, AI in Medicine – see BSc program

Man-Machine Interaction Seminar Course code:
10251291

2 credits

Prerequisites: MSc – Semester 1

Lecture: Dr. Solange Karsenty 2 weekly hours

We will study and discuss man machine interaction in for traditional interactive systems, mobile systems

and web applications. The seminar includes a collection of topics from current research trends: user

centered design, usability, the world of Internet and users, systems and society, behaviors, security, mobile

systems.

Cognitive Computing: Computer architectures and brain-inspired
programming

3 credits

Prerequisites: Introduction to Object Oriented Programming &
Software Engineering, Computer Architecture

MSc – Semester 1

Lecture: Dr. Elishay Ezra 3 weekly hours

Computations based on von Neumann architecture have faced limitations in recent years. Consequently,

artificial neuron networks are drawing increasing attention. At its core is the goal of building machines that

exceed the computational ability of the brain, with certain aspects of cognition. Such a computational

paradigm was developed in part by IBM. IBM has developed the SyNAPSE chip, built from an

unprecedented number of 1,000,000 neurons and 256 million synapses. It is the largest chip developed by

IBM – it is built from 5.4 billion transistors that make up 4,096 neuro-synaptic cores and needs 70mW (sizing

less than traditional chips). As part of a comprehensive ecosystem that integrates cognitive hardware and

software, the technology breaks the boundaries of distributed computing and supercomputer development.

In this course we will learn the basics of neuromorphic computing, focusing on analog and digital models

for neuro-synaptic cores, new software paradigms for cognitive computations, and algorithms and

applications for synaptic cores. The course does not require prior knowledge of electrical engineering or

neurobiology, but students will need a considerable degree of thought flexibility and curiosity to delve a little

into these topics.

Deep Learning 3 credits

Prerequisites: Linear Algebra A + B, Infinitesimal Calculus: Integral
Uses & Approximate Calculations, Infinitesimal
Calculus: Infinitesimal Calculus: Curves & Surfaces

MSc – Semester 2

Lecture: Dr. Yoram Yekutieli 3 weekly hours

Deep learning has burst into media attention in recent years as the main generator of the AI revolution, but

in fact it is a pretty old concept. The idea and its realization are now booming because of three main factors:

a vast amount of data, a great deal of computing power and learning algorithms that utilize the other two

factors effectively.

In the course we will introduce the field of deep learning and its connection to other fields. We will use up-

to-date tools to accomplish tasks that until recently were considered science fiction. We will learn about

limitations of the tools and methods and describe future development directions.

We will focus on the practical aspects of deep learning:

Collecting existing data and databases, selecting models, using existing models and transfer learning, using

libraries and software frameworks (such as TensorFlow, Theano, Keras, Matlab Neural Network Toolbox),

HAC - Computer Science B.Sc. and M.Sc. Programs Page 41 of 44

troubleshooting model training, cloud computing, deploying and using models on different end devices and

under different conditions.

Exercises and demonstrations show actual use of deep learning to solve a variety of problems such as:

text and natural language processing, recommendation systems, style text production, image processing,

image search, style recognition and application in pictures, image production with autoencoders, handling

audio and music, game resolution and others problems with deep reinforcement learning.

Euclidean geometry, Curves & Polyhedrons 3 credits

Prerequisites: Linear Algebra A + B, Algebraic Structures MSc – Semester 2

Lecture: Dr Arie Yakir 3 weekly hours

Affine geometry: flats, affine transformation, the structure of the general affine group. Euclidean geometry:

Euclidean vector space, the general orthogonal group, angle concepts, affine Euclidian space, the group

of isometries, characterization of the isometry group in 2 dimensional and in 3 dimensional space, the

geometry of the triangle, spheres, convexity, Euler's formula and convex polytopes.

Information Security 3 credits

Prerequisites: Linear Algebra A + B, Operation Systems, Computer
Communications, Computer Architecture

MSc – Semester 2

Lecture: Mr. Binyamin Hirshberg 3 weekly hours

Information security objectives, general threats to information systems. The basics of encryption theory,

cryptography engineering: symmetric and asymmetric ciphers (DES, AES), block and stream ciphers

(RC4). Key exchange methods (Diffie-Helman). HASH algorithms for cryptographers and digital signatures.

Public key infrastructure certificates (PKI). Security policies and protection fundamentals: depth protection,

separation of liability and authority, identification, verification, permissions and minimum right principle, Bell

LaPadua model. Concepts and techniques of attacks. Attackers and ethics. Network security basics, SSL

case analysis, computer security basics, operating systems and trusted computing. Android case analysis.

Mobile Robots* 3 credits

Prerequisites: Algebra A + B, Infinitesimal Calculus: Integral Uses
& Approximate Calculations, Infinitesimal Calculus:
Infinitesimal Calculus: Curves & Surfaces

MSc – Semester 2

Lecture: Dr. Yoram Yekutieli 3 weekly hours

Automated airplanes, automated cars, automated vacuum cleaners and anthropomorphic robots (such as

Sony from the movie I Robot) are all mobile robots. These sophisticated devices (and other creatures

moving around the world) face many complex challenges, including:

• Orientation (Where am I? How do I map my surroundings? How do I navigate to different places?

How will I plane a route? How will I avoid obstacles?)

• Use of sensors (What can I see, hear, feel? What is the distance to objects? Are they moving?)

• Communications (How should I communicate with my peers/other creatures? How do I produce

sound / light / radio effectively? Is communication open or confidential?)

• Action on the world (How do I move in different areas? How do I manipulate objects?)

• Use of limited resources (How can I preserve energy / power? How can I be effective in my

computational-cognitive resource use?

• Planning, strategy, learning and understanding the world (How will I plan my actions according to

the tasks and information I gather from the world? What is best to do in uncertain and changing

conditions? How will other opponents react? How will I improve my skills and performance?)

HAC - Computer Science B.Sc. and M.Sc. Programs Page 42 of 44

These problems include aspects of mechanics and hardware, software and information. In the course we

will describe these problems and some of the solutions and will experiment with construction, programming

and operation of LEGO NXT mobile robots.

Scientific Calculation Methods* Course code:
10251081

3 credits

Prerequisites: Linear Algebra A + B, Analysis A + B Year 1 – MSc –
Semester 2

Lecture: Dr. Yoram Yekutieli 3 weekly hours

Discrete and continuous models, dynamic systems with one and two variables, phase plane analysis and

finding fixed points, linearization and stability analysis with eigenvalues, nullclines, limit cycles, Hopf

bifurcation, bistability, examples from the natural sciences. Differential equations and numerical solutions,

characterization of methods according to efficiency and stability, adaptive step size, uses of Lagrange

multipliers to solve dynamics with constraints and numerical solutions. Diffusion limited aggregation

systems, cellular automata and use of the maze solving algorithm. Markov chains, absorption, ergodic

chains and state distribution. Linear interpolation approximations and solving equations. Search problems

in large spaces, optimization, uphill (downhill) climb methods, escape from local maxima and minima,

genetic algorithms and evolutionary computing. Dimensionality reduction, principal component analysis,

separation of sources by independent component analysis. Classification and clustering K-means,

expectation maximization, maximum likelihood estimation, geometric methods. Correlation analysis,

frequency space and information theory.

Medical robotics: robots for surgery, laparoscope and endoscope manipulators, micro robots, remote

operation, team training simulators, machine interfaces.

Computer Vision & Advanced Learning* Course code:
10251071

3 credits

Prerequisites: Linear Algebra A + B, Analysis A + B MSc – Semester 1

Lecture: Dr. Yoram Yekutieli 3 weekly hours

Can a computer see? In the past, this question was discussed mainly in fiction, but today the applications

that use computer vision are increasing. Process control in factories, detecting lane departure, tracking

suspects at airports and identifying faces are examples of commercial use of computer vision systems.

In this course, we will introduce the field and systematically describe the geometry of computer vision

systems. The subjects we will study are: camera parameters, perspective projection, and affine projection.

Projective geometry and its uses. Rotation and translation transformations in 2D and 3D, homogeneous

coordinates, coordinate system transformation. Projection matrices. Camera calibration: solving systems

of equation using least square error method, solution Ax = 0, Ax = b, pseudo-inverse. Evaluation of the

projection matrix using linear and nonlinear methods. Internal and external parameters of the camera,

decomposition the projection matrix. Radial deformations. Automatic calibration. The geometry of several

views: epipolar geometry, calculating the fundamental matrix directly and using matching points. Epipolar

image rectification. Three views. Stereoscopy and 3D reconstruction. Use of correlations to perform

matching. Dense reconstruction or according to selected points. Radiometry – light measurement: light in

space and on surfaces. Shading light sources and structure identification. Use of RANSAC, Hough

transform, Harris corner detection for robust estimation. Dimensionality reduction and face recognition with

PCA. Using a lot of information (Internet) for identification: detection and recognition.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 43 of 44

Robotics* Course code:
10251111

3 credits

Prerequisites: Linear Algebra A + B, Analysis A + B MSc – Semester 2

Lecture: Dr. Yoram Yekutieli 3 weekly hours

Basic kinematics: transformation of coordinate systems. Denavit-Hartenberg (DH) parameters, Modified

DH. Degrees of freedom and kinematics of a robotic manipulator. Forward and inverse kinematics:

workspace, multiple solutions, solution methods. Differential motion: linear and angular velocity, Jacobian

method, Jacobian calculation. Path planning: Cartesian space and joint angle space, path planning

methods. Basic statistics and dynamics: the relationship between statics, kinematics and Jacobian.

Movement, trajectory and navigation planning: configuration space, main planning methods.

Geometry* 3 credits

Prerequisites: Linear Algebra A + B, Algebraic Structures MSc – Semester 2

Lecture: Dr. Arie Yakir 3 weekly hours

Affine geometry: directness, affine transformation, general affine set structure, Thales's theorem,

Menelaus's theorem, Ceva's theorem, Pappus's theorem, Desargues theorem. Projective geometry:

subspaces, affine space projective completion, Pappus and Desargues projective versions, The general

projective set, topology. Euclidean geometry: Euclidean vector space, the general orthogonal set, angle

concepts, affine Euclidian space, the isometric set, characterization of the isometric set in 2D and 3D space,

triangle geometry, spheres, curves and curved polyhedrons. Non-Euclidean geometry: axiomatic approach

to geometry, elliptical geometry, hyperbolic geometry.

Error Correction Codes* 3 credits

Prerequisites: Linear Algebra A, Linear Algebra B, Discrete
Mathematics, Algebraic Structures

MSc – Semester 1

Lecture: Dr. Arie Yakir 3 weekly hours

Basic concepts: linear ciphers, generator matrix and test matrix, distance and weight, coding equivalents,

encryption and decryption, the syndrome method. Bounds: sphere-packing bound, Plotkin bound, Johnson

bound, MDS codes, sphere-packing bound. Finite fields: polynomials and the Euclid's algorithm, primitive

root modulo, finite field construction, automorphisms, Galois extension. Cyclic cyphers: BCH code, BCH

code algorithms.

User Interface Software Technology* Course code:
10251111

3 credits

Prerequisites: Object Oriented Programming MSc – Semester 1

Lecture: Dr. Solange Karsenty 3 weekly hours

This course covers man machine interfaces software tools for interactive applications, advanced toolkits

and visual programming, graphic user interface builders, as well as basic principles for designing and

building user-friendly interfaces.

Topics of the course include: conceptual model, task analysis, and user-centered design software

engineering concepts, model view controller architecture, components, widgets, input techniques, event-

driven programming, windows systems, dialog flow, error management and undo , screen design layout

and graphic design principles for web programming, modern development tools and frameworks.

HAC - Computer Science B.Sc. and M.Sc. Programs Page 44 of 44

User Interface Design* 3 credits

Prerequisites: User Interface Software Technology MSc – Semester 2

Lecture: Dr. Solange Karsenty 3 weekly hours

The aim of the course is to study design processes and build advanced human-machine interfaces. Topics:

Human factors, the human processor and conceptual models, task analysis, user-centered design, usability

and evaluation, graphic design and means of display, virtual reality, augmented reality, web design.

